skip to main content


Search for: All records

Creators/Authors contains: "Bechtel, Hans A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2into solid biominerals. Six crystalline polymorphs of CaCO3are known—3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.

     
    more » « less
  2. Calcium silicate perovskite, CaSiO 3 , is arguably the most geochemically important phase in the lower mantle, because it concentrates elements that are incompatible in the upper mantle, including the heat-generating elements thorium and uranium, which have half-lives longer than the geologic history of Earth. We report CaSiO 3 -perovskite as an approved mineral (IMA2020-012a) with the name davemaoite. The natural specimen of davemaoite proves the existence of compositional heterogeneity within the lower mantle. Our observations indicate that davemaoite also hosts potassium in addition to uranium and thorium in its structure. Hence, the regional and global abundances of davemaoite influence the heat budget of the deep mantle, where the mineral is thermodynamically stable. 
    more » « less
  3. The tunability of the longitudinal localized surface plasmon resonances (LSPRs) of metallic nanoarcs is demonstrated with key relationships identified between geometric parameters of the arcs and their resonances in the infrared. The wavelength of the LSPRs is tuned by the mid-arc length of the nanoarc. The ratio between the attenuation of the fundamental and second order LSPRs is governed by the nanoarc central angle. Beneficial for plasmonic enhancement of harmonic generation, these two resonances can be tuned independently to obtain octave intervals through the design of a non-uniform arc-width profile. Because the character of the fundamental LSPR mode in nanoarcs combines an electric and a magnetic dipole, plasmonic nanoarcs with tunable resonances can serve as versatile building blocks for chiroptical and nonlinear optical devices.

     
    more » « less
  4. Abstract

    We combine synchrotron-based near-field infrared spectroscopy and first principles lattice dynamics calculations to explore the vibrational response of CrPS4in bulk, few-, and single-layer form. Analysis of the mode pattern reveals aC2 polar + chiral space group, no symmetry crossover as a function of layer number, and a series of non-monotonic frequency shifts in which modes with significant intralayer character harden on approach to the ultra-thin limit whereas those containing interlayer motion or more complicated displacement patterns soften and show inflection points or steps. This is different from MnPS3where phonons shift as 1/size2and are sensitive to the three-fold rotation about the metal center that drives the symmetry crossover. We discuss these differences as well as implications for properties such as electric polarization in terms of presence or absence of the P–P dimer and other aspects of local structure, sheet density, and size of the van der Waals gap.

     
    more » « less
  5. null (Ed.)
    Abstract Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO 3 ) 2 ] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior . Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized. 
    more » « less